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A Simplified Scheme for Obtaining Precipitation
and Vertical Hydrometeor Profiles from
Passive Microwave Sensors

Christian Kummerow, William S. Olson, and Louis Giglio

Abstract—This paper presents a computationally simple tech-
nique for retrieving the precipitation and vertical hydrometeor
profiles from downward viewing radiometers. The technique
is computationally much Iess expensive than previous profiling
schemes and has been designed specifically to allow for tractabil-
ity of assumptions. In this paper, the emphasis is placed upon
passive microwave applications, but the combination of passive
with active microwave sensors, infrared sensors, or other a priori
information can be adapted easily to the framework described
here. The technique is based upon a Bayesian approach. Here, we
use many realizations of the Goddard Cumulus Ensemble model
to establish a prior probpability density function of rainfall pro-
files. Detailed three-dimensional radiative transfer calculations
are used to determine the upwelling brightness temperatures
from the cloud meodel to establish the similarity of radiative
signatures and thus the probability that a given profile is ac-
tually observed. In this study, we show that good results may
be obtained by weighting profiles from the prior probability
density function according to their deviation from the observed
brightness temperatures. Examples of the retrieval results are
shown for oceanic as well as land situations. Microwave data from
the Advanced Microwave Precipitation Radiometer (AMPR) in-
strument are used to illustrate the retrieval structure results for
high-resolution data while SSM/I is used to illustrate satellite
applications. Simulations are performed to compare the expected
retrieval performance of the SSM/I instrument with that of the
upcoming TMI instrument aboard the Tropical Rainfall Mea-
suring Mission (TRMM) to be launched in August 1997. These
simulations show that correlations of ~0.77 may be obtained for
10-km retrievals of the integrated liquid water content based
upon SSM/I channels. This correlation increases to ~0.90 for the
same retrievals using the TMI channels and resolution. Due to the
lack of quantitative validation data, hydrometeor profiles cannot
be compared directly but are instead converted to an equivalent
reflectivity structure and compared to existing radar observations
where possible.

1. INTRODUCTION

ICROWAVE remote sensing of clouds and precipi-
tation has shown great promise because of the di-
rect interaction between hydrometeors and the radiation. field.
Unlike infrared measurements which are sensitive only to
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the uppermost layer of clouds, microwave radiation has the
ability to penetrate the clouds and offer insight into the
structure of the rainfall itself. Passive microwave sensors
have flown on a number of spaceborne platforms. These
include the Nimbus 5 and Nimbus 6 spacecraft (launched in
1972 and 1976, respectively) with the Electronically Scanned
Microwave Radiometer (ESMR). The ESMR was a single-
channel 19.35-GHz instrument scanning cross track between
+45° of nadir. In 1978, the Scanning Multichannel Microwave
Radiometer (SMMR) was launched aboard Seasat and Nimbus
7. It measured brightness temperatures at five frequencies
(6.6, 10.7, 18.0, 21.3, and 37.0 GHz) for both horizontal
and vertical polarizations. Finally, in 1987, the first Special
Sensor Microwave/Imager was launched on the Defense Me-
teorological Satellite Program (DMSP) F-8 satellite. Since
then, three additional SSM/I instruments have been launched.
DMSP F-10 was launched in December 1990. DMSP F-11
was launched in November 1991 to replace the ailing F-
8, and DMSP-12 was launched in August 1994 although
its SSM/I sensor is currently spun down. The SSM/I is a
seven-channel (19.35 H&V, 21.235 V, 37.0 H&V, and 85.5
H&V GHz), conically scanning radiometer that has proved
itself stable and well calibrated. In the near future, microwave
data will be provided by the Tropical Rainfall Measuring
Mission (TRMM) satellite scheduled to launch in August
1997 (see [1]). TRMM will carry the first precipitation radar
which is a cross-track scanning 13.8-GHz instrument as well
as the TRMM Microwave Imager (TMI) which is a copy
of the. SSM/I except that channels at 10.7 GHz (vertical
and horizontal polarizations) are added and the water vapor
channel is moved from 22.235 to 21.3 GHz to avoid saturation
in the tropics. ‘

The oceans radiate microwave energy equivalent to &7
where ¢ is the surface emissivity (~0.5 for typical microwave
frequencies). For passive microwave observations, the ocean
therefore appears uniformly cold. Raindrops in the atmosphere
act to absorb and re-emit radiation at their own thermodynamic
temperature thus increasing the observed brightness temper-
atures. Algorithms which make use of this relationship are
commonly referred to as “emission”-based algorithms. Perhaps
the best known example of such an algorithm is due to [2].
Longer wavelengths tend to saturate at higher rainfall rates and
are less sensitive to the effects of ice scattering. That makes
these wavelengths (19 and 37 GHz) better suited for emission
type algorithms. Emission algorithms, however, cannot work
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over land where high surface emissivities (~0.9) obscure the
emission signal. They are also plagued by resolution prob-
lems which cause inversion algorithms that-do not consider
the inhomogeneity of ramfall to seriously underestimate the
rainfall.

As microwave frequencies increase, so. does the amount
of scattering due to ice particles commonly found in raining
clouds. This scattering acts to reflect upwelling radiation back
to the surface, lowering the observed brightness temperatures:
While all frequencies display some amount of scattering, the
behavior is most evident in the 85-GHz channel of the SSM/I
where brightness temperature depressions of as much as 150 K
can be observed over convective updrafts. Algorithms which
make use of this relationship are generally referred to as
“scattering” algorithms. Examples of this type of algorithm can
be found in [3], [4], or [5]. Scattering algorithms work over
both land and water and are able to take advantage of the better
spatial resolution offered by the high frequency channels.
While this has made the algorithms very popular, scattering
algorithms must infer the precipitation based upon a measure
related to the ice content of the cloud. This makes scattering
algorithms more susceptible to regional and temporal biases
than the more direct estimates made by emission methods.

In addition to emission' and scattering algorithms, there
are also a number of multichannel regression algorithms.
Examples of these may be found in [6], or the SSM/I Cal-
ibration/Validation algorithm described by [7]. The algorithms
are based upon theoretical radiative transfer computations
to derive regression statistics. In so doing, however, these
algorithms become sensitive to the assumed vertical structure
of rain systems. Unless the ratios of cloud water, rain water,
and ice in the cloud systems are assumed correctly, these
schemes are susceptible to the same uncertainties found in
pure scattering algorithms. To avoid some of these problems,
[8] have developed alternative approaches in which emission
signatures are used to determine rainfall while scattering sig-
natures are used to help define the nature of the precipitation.
To overcome the inhomogeneous rainfall problem, [9] has
developed a technique that employs normahzed polarization
and scattering indices.

As can be seen from the diversity of approaches, the
theoretically straightforward relationship between raindrops
and radiation in the microwave region is generally complicated
by a myriad of related problems such as the nature of the
surface, the amount and distribution of nonprecipitating cloud

water, the phase of the hydrometeors, the horizontal as well

as vertical distribution of hydrometeors; and the uncertainties
in the radiative transfer models themselves. A final class of
algorithms which includes the one described in this paper
consists of inversjons schemes which seek to overcome some
of these problems by simultdneously retrieving the entire
vertical structure of the precipitation. This is made possible
by the fact that response functions for different channels
peak at different depths within the raining column. These
algorithms, sometimes referred to as profiling algorithms,
have in common that they vary an assumed rain structure
in order to minimize the differences between observed and
modeled radiances. Examples of these algorithms can be found
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in [10]-{13]. The major drawback of these algorithms to
date has been the fact that they all require radiative transfer
computations within an iterative minimization scheme. This
has made these algorithms extremely expensive to implement
in a routine fashion. Research motivated by the TRMM has
led to the present work which borrows ideas from much of
the previous work to build a profiling algorithm (referred
to as the Goddard' Profiling Alforithm, GPROF) which is
intuitively simple, computationally much less intensive than
its predecessors and expandable to include not only passive
microwave, but radar or infrared observations as well.

II. RETRIEVAL METHOD

Radiative transfer calculations can be used .to determine
a brightness temperature vector, TB, given a vertical dis-
tribution of hydrometeors represented by R. An inversion
procedure however, is needed to find the hydrometeor profile,
R, given a vector TB. The present retrieval method has
its foundation in Bayes theorem. In Bayes’s formulation, the
probability of a particular profile R, given TB can be written
as

Pt (R|TB)-= Pr (R) x Pr(TBR) - )

where Pr(R) is the probability with which a certain profile
R will be observed and Pr(TB|R) is the probability of
observing the brightness temperature vector, TB, given a

* particular rain profile R. The first term on the right hand

side of (1) is derived using the Goddard Cumulus Ensemble
model (GCE) which is a cloud microphysical model developed
mainly by [14]. While the model itself is only reviewed
briefly, those aspects of the model which are important to
the current discussion are described in detail in Section II-
A. To obtain the second term on the right hand side of (1),
we first discuss possible radiative transfer schemes, and then
the convolution of brightness temperatures to match either
aircraft or satellite fields of views. Together, the radiative
transfer and the convolution scheme comprise the forward
modeling portion of the retrieval algorithm which is covered
in Section II-B. The inversion scheme (Section II-C) follows
the description of the forward problem.

A. The Goddard Cumulus Ensemble Model

During the past two decades, convective scale models have
advanced sufficiently to study the dynamic and microphysical
processes associated with mesoscale convective systems. The
basic feature of these models are that they are nonhydro-
static and include a good representation’ of microphysical
processes. The current model’s framework is based upon
the original cloud ensemble model developed by Soong and
Ogura [15]-[17]. However, many significant improvements

“have been made in the past decade at Goddard. Chief among

these have been the addition of ice-microphysical processes.as
well as solar/infrared radiative transfer processes. The model
was officially renamed the Goddard Cumulus Ensemble model
in 1989.

The cloud microphysics include a parametenzed Kessler

type - two-category liquid water scheme (cloud water and
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rain), and parameterized [18] three-category ice phase schemes
(cloud ice, snow, and hail/graupel). The shapes of liquid and
ice are assumed to be spherical. The distributions of rain, snow,
and graupel (or hail) are taken to be inverse exponential with
respect to the diameter (D) such that

N(D) = No exp(-AD) @

where N(D) is the number of drops of diameter between D
and D + dD per unit volume, Ny is the intercept parameter
and A is the slope of the distribution given by

0.25
A= (M) ) 3)
PGz

The typical intercept parameters used in the GCE model
for rain, snow, and graupel are 0.08, 0.04, and 0.04 cm~?,
respectively. The density of rain, snow, and graupel are 1, 0.1,
and 0.4 g - cm~3, respectively. The cloud ice is monodisperse
with its diameter of 2 x 1072 cm and a density of 0.917
g - cm™3

Short-wave (solar) and long-wave (infrared) radiation pa-
rameterizations have recently been included in the GCE model.
In the near infrared region, the computation of absorption
of solar radiation by water vapor follows that of [19] and
[20]. In the short-wave region, the computation of the ab-
sorption by ozone follows [21]. The absorption of Oy and
COy near the visible and near-IR regions is included using
the parameterization of [22]. In cloudy atmospheres, the four-
stream discrete ordinate method of [23] is used to compute
transmittance and reflectance of cloudy layers. The long wave
scheme takes into account the effects of both gaseous and
hydrometeor absorption. For gaseous absorption, the effects
of water vapor, carbon dioxide, and ozone are computed.

A stretched vertical coordinate (height increments from 220
to 1050 m) with 31 grid points is used in order to maximize the
resolution of the lowest levels. The model top can be 20-25
km. In the three-dimensional model, current computers limit
simulations to about 218 x 54 grid points (using 1- or 1.5-
km resolution) in the horizontal and 32 grid points (up to
a depth of 22 km) in the vertical. For line-type convection,
an open-type lateral boundary condition is used along the z-
axis in the direction perpendicular to the line convection and a
periodic lateral boundary condition is applied along the y-axis.
However, open lateral boundary conditions can also be used
in the y-axis for simulating isolated storms.

B. The Forward Model

1) Radiative Transfer Calculations: The observed mi-
crowave radiances at the top of the atmosphere originate partly
at the earth’s surface and partly from atmospheric constituents.
The contribution from the earth’s surface depends primarily
upon the nature of the surface (i.e., water or land) and on the
temperature of that surface. Atmospheric constituents such as
oxygen, water vapor, and cloud water act to absorb and emit
upwelling radiation. Large, precipitation drops further act to
scatter upwelling radiation. Because of the varied, and often
complex nature of each of these components, it is necessary
to first understand the radiative properties of each of these
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components before attempting to understand the propagation
of radiation through the medium.

The emissivity, e, of a surface is determined by the fre-
quency, incidence angle and polarization of the radiation, and
by the complex index of refraction of the surface as described
by the Fresnel relations [24]. Over oceans, the refractive index
is a function of the temperature, the salinity, and the surface
roughness induced by wind driven waves. While the effects.
of temperature and salinity are well understood, the effect
of surface roughening is much more uncertain. In this study,
the model of [25] is used to compute the ocean emissivity
as a function of near-surface wind speed. While this model
provides a satisfactory first order correction to account. for
wind induced roughening, it is recognized that this is an
area of ongoing research that requires attention. Over land,
the surface emissivity is generally assumed to be 0.9 for
moderately dry, bare soil. This value is affected primarily
by soil roughness, soil moisture and vegetation cover. Since
none of these parameters are generally known, there seems
little hope at this time to refine the land emissivity estimates
even if the individual effects of the parameters affecting land
emissivity were better understood.

Among atmospheric absorbers of microwave radiation, wa-
ter vapor, molecular oxygen and cloud water, need be consid-
ered. Water vapor has a weak pressure broadened absorption
line at 22.235 GHz and a strong line at 183 GHz. The 22.235
GHz line is of special significance in this study since it
corresponds to a frequency measured by the SSM/I. Oxygen
displays a strong complex of lines at 60 GHz as well as a single
transition line at 118 GHz. The atmosphere is relatively clear
in the window regions between these absorption lines. In this
study, both the water vapor absorption as well as the oxygen
absorption are calculated from [26]. Nonprecipitating cloud
particles are of the order of 100 xm or less in diameter. This
dimension is much smaller than typical wavelengths under
consideration (3.5 mm-3 cm), thus permitting the use of the
Rayleigh approximation. The absorption coefficient in this case
depends only upon the dielectric constant of the liquid and
upon the third power of the diameter of the cloud droplets.
Thus, the absorption of the cloud water is simply proportional
to the total mass of cloud water and is independent of the
droplet size distribution. Scattering is negligible in this limit.

As cloud drops coalesce into raindrops, their dimensions can
get comparable to microwave wavelengths and the Rayleigh
approximation becomes invalid. If particles are assumed
spherical, Mie theory may be employed. For shapes other
than spheres, solutions like the Extended Boundary Condition

" Method [27], or the discrete dipole approximation [28] must be

employed. The difficulties introduced by any these methods
are three-fold. The first is due to the fact that scattering
parameters exhibit resonance features that effectively increase
the scattering efficiency beyond the third power of the drop

-diameter. This causes the volume scattering characteristics to

depend upon the drop size distribution. The second difficulty
introduced by the larger size parameters is the fact that
scattering becomes important. In the case of 85 GHz, ice
scattering from precipitation size hydrometeors becomes the
dominant characteristic. Finally, it must be mentioned that
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computationally these codes are all far more intensive than
the closed form expression of the Rayleigh.approximation.
Mie scattering calculations-can be very time consuming, while
nonspherical codes are generally prohibitive for anything but
a limited number of cases. For all practical purposes, these
calculations can only be used through lookup tables containing
implicit assumptions of drop size distributions and ice density
in the case of frozen hydrometeors. - o

Once the radiative properties of the surface and atmos-

phere are known, a number of techniques may be used to
compute the upwelling radiances. Two techniques have been
considered in this study. The first technique, a one-dimensional
Eddington approximation, has been used extensively during
the development of the inversion technique. The details of
the Eddington approximation, as well as its accuracy (1-2 K
for the present application) are summarized by [29]. While
the accuracy of the approximation is fully adequate, . the
one-dimensional treatment of the inherently three-dimensional
problem causes errors and biases which can become significant
in areas of large hydrometeor gradients. The second, more
complete treatment of the radiative transfer problem is done
using a recently developed backward Monte Carlo scheme. In
this scheme the photons are started at the point at which the
brightness temperature, 7', is to be computed, in the direction
opposite to' that in which they would physically propagate
inside the medium. Each photon is then traced backward
through the medium following probabilistic interaction laws
until the photon is absorbed. Absorbed photons are treated as
being emitted at the point of absorption z with T'b equal to
the physical temperature of the medium at that point. T'(z).
While computationally not trivial, the backward Monte Carlo
approach does make it possible to generate useful results on a
mid-sized workstation. Details of the procedure can be found
in [30]. ‘

Fig. 1' shows hydrometeor fields generated by the GCE
model. A more detailed representation of the integrated liquid

and ice fields for the cross section at x = 17, is shown in =

the top panel of Fig. 2. The middle and bottom panels of
Fig. 2 show the brightness temperatures generated from both
the 1-D plane parallel Eddington as well as the 3-D Monte
Carlo schemes for 19 and 85 GHz, respectively. The 1-D
Eddington calculations are performed independently for each
1.5 x 1.5 km cloud model pixel in this calculation. At 19
GHz, the high-resolution plane parallel results can be seen to
be . slightly warmer than the Monte Carlo results throughout
the region of significant water content. The difference in these
regions of high absorption can be attributed to the fact that
_photons in the Monte Carlo are allowed to leak out of the
regions of greatest absorption to nearby pixels. Near y = 48,
this departure is further amplified by the large and rapidly
changing ice content which acts to scatter the radiation further
from the source. Although not very evident in this figure,
the excess radiation is generally seen to emerge near the
regions of high absorption. Large area differences or biases
are generally quite small for absorption frequencies as shown
in Table I. At 85 GHz, the biases are reversed due to the fact
that scattering is the dominant radiative interaction. When the
ice layer becomes optically thick, much of the radiation in the
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Fig. 1. (a) Integrated liquid water and (b) ice contents generated by the
Goddard Cumulus Ensémble model “GATE” simulation,

plane parallel solution is scattered back toward the surface. In
the 3-D case, photons are free to move about in the horizontal
dimension and thus more apt to find pockets of diminished
scattering through which they can emerge. This phenomenon
can cause plane parallel approximations to underestimate 7'bs
in significant regions of precipitating clouds and can produce
nontrivial biases. , (‘
While the 1-D independent pixel computations show occa-
sional large departures from the true 3-D brightness tempera-
tures, the most relevant quantities in satellite remote sensing
are not the point by point differences presented above, but
rather the differences and biases that might be observed at
satellite footprint resolutions. The average brightness temper-
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Fig. 2. Top panel: Integrated liquid and ice water content generated by the
Goddard Cumulus Ensemble model along the z = 17 line shown in Fig. 1.
Center and bottom panels: Comparison of brightness temperatures obtained
from 1-D plane parallel and 3-D Monte Carlo calculations along the = 17
line displayed in the top panel.

atures over 12 x 12 km areas corresponding to the high-
est sampling density of the SSM/I are used to illustrate
the differences. Two comparisons are made in Table I. The
first is the comparison between the Monte Catlo results
and the 1-D independent pixel calculations described above.
While the mean differences are generally small, it is possible
to get significant departures over individual pixels as seen
from the maximum difference entries. These pixels can make
significant contributions to the total retrieved rainfall. The
second comparison is made between the Monte Carlo results
and 1-D averaged hydrometeor computations. In these 1-D
computations, the hydrometeors are averaged first and plane
parallel computations are then applied to the uniform hydrom-
eteor field. These calculations are included to demonstrate
the danger of treating individual satellite size footprints as
homogeneous in the radiative transfer calculations. Unlike the
plane parallel independent pixel calculations shown in Fig. 2,
averaging the hydrometeors before performing the radiative
transfer calculations introduces large errors and biases. It is

1217

TABLE I
COMPARISON OF RADATIVE TRANSFER METHOD ON THE CALCULATED BRIGHTNESS
TEMPERATURES FOR 12 X 12 km PIXELS. ONLY RAINING PIXELS ARE CONSIDERED

10 GHz 19 GHz 37 GHz 85 GHz
Mean Diff.:  PPIndep. Pixel / MC 0.8K 1.2K 2.0K 2.7K
Max. Diff ~ PPindep. Pixel / MC 27K 53K 64K 12.1K
Bias PPindep. Pixel = MC -0.3K +0.2K +0.2K +0.7K
Mean Diff.: PPAvg. Hydro / MC 7.4K 14.6K 17.8K 14.2K
Max. Diff PP, 'Avg. Hydro / MC 26.1K 414K 50.9K 29.0K
Bias PPavg Hydro—MC  +534K  +1418K  +1740K -088K

this difference which causes the so called “footprint filling
bias” present in most emission based (19 or 37 GHz) algo-
rithms. By not accounting for the natural inhomogeneity of
rainfall in the radiative transfer calculations, the brightness
temperatures corresponding to average hydrometeor fields
tend to be significantly warmer than the actual 3-D fields.
This excessive warming of brightness temperatures in turn
causes underestimates in the retrieved rainfall if the rainfall
inhomogeneity effects are not corrected for.

2) Antenna Convolution: Once high-resolution brightness
temperature fields have been calculated using either plane
parallel or Monte Carlo methods, it is necessary to simulate
the radiances as they would be measured from a downviewing
microwave sensor. This is accomplished by convolving the
brightness temperature field with the antenna gain function.
For each channel, v, the measured temperature Tb(sg) may
be expressed as

T, (50) = / G\ (50, 5) Th,(s) dA @

where G, (so, s) is the antenna gain function for channel v
at position s relative to antenna boresight position, so, and
Tb,(s) is the high-resolution brightness temperature calculated
from the cloud model.

Sensitivity experiments using synthetic data show that the
retrieval procedure is not very sensitive to the exact specifi-
cation of the antenna gain function. A step function having
the appropriate spatial resolution tended to perform almost the
same as when the exact antenna gain function was employed in
the retrieval. Thus, while it is more accurate to use the exact
antenna gain function when it is known, using approximate
gain functions does not appear to be a limiting factor in the
retrieval at this time. In this study, all channels are convolved
with an approximate antenna gain function. The effects of
deconvolution schemes which increase the spatial resolution
at the expense of some additional noise [31], [32] have not
been examined.

C. Inversion Method

1) Theoretical Basis: In this development, the vector  is
used to represent all of the physical quantities to be retrieved
in the inversion method, and the vector y, represents the set
of available sensor observations. Following [33], it is assumed
that the “best” estimate of z, given the set of observations y,,
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is the expected value

E(z) = // /:r. pdf (z) d | ®

where the probablllty density function pdf(z) is propor-
tional to the conditional probability that « represents the true
earth/atmosphere state, Zi,ue given that y is equal to the

' ~observed y: ‘
pdf (2) o P(T = Teue|y = 4g). ©

The expected value E(z) in (5) is known as the minimum
variance solution for z. The multiple integral signs in (5)
indicate integration over all dimensions of the state vector
x. Using Bayes’ Theorem (again following [33]), (6) may be
rewritten as '

pdf(.’l,‘) X P(y = y0|:1: = wtrue) P(il; = ztrue)
o8 POS[‘!!Q

where Pps is equivalent to the probability that the set of
observations y, deviate from the set of simulated observations
y,(z) by a certain amount, given the earth/atmosphere state «.
In future discussions Ppg will be called the probability of the
.- observational deviation, and P, the a priori probability that
« is the true state of the earth/atmosphere.

If it is further assumed that the errors in the observations and
the simulated observations are Gaussian and uncorrelated, then
the probability of observational deviation can be expressed as

Posly, — yy(x)] o

exp ({—0.5[yo — 4, ()"} (O + 8) [y —y.(x)]) (8)

where O and § are the observation and model error covariance

matrices, respectively. Substituting for Ppg in (7) using (8),
and then using the resulting expression to substitute for pdf in
(5), the final expression for the minimum variance solution is

5 P =050y —y,()]” (O + )~ [yo — y, ()]}
A

. Po(T = Tirue) dz ' ©

where A is the normalization factor

A// /exp{os y, ()7}

(0 +8)7 yo = Yo (@) Pas (@ = Tiruo) dz. (10)

2) Practical Simplification: At this stage, it is common
practice in remote sensing applications to re-express’ P, as
‘the probability of the deviation of # from some suitable initial
guess state x;,, and then assume that the resulting probability
P, (% —x;5,) has a Gaussian form. It follows that the minimum
variance solution (7) is equivalent to the minimizing state z
of: the functional

- J(@) =[yo —ys(=)]" (O+8) [y, -
k + (& = Tin) T H T — T4

ys(#)]
an

where I is the covariance matrix of initial guess éIrors (see,
e.g., [34]).

Ys (37)] as (-’5 = xtrue) @) '
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This method of solution requires the interactive search for
the minimum of the scalar J in the multidimensional space
of z, which involves the evaluation of the partial derivatives
of y, at the current iterate of x. However, this approach is
not practical in the applications which follow. Firstly, the
evaluation of y, or its derivatives is computationally intensive
(see Section II-B). Since in general the components of Y,
are nonlinear functions of the vector components of z, the
derivatives of y, must be evaluated on each iteration. Typically
« can have a dimension ~10 or greater, and y, is also ~10 in
many applications; so ~100 or more evaluations of y, or its
derivatives would be required on each iteration. In addition, for
a given set of observations, J may have a shallow minimum
or even multiple minima, which can complicate the search
procedure. Another consideration is that in the applications of

- this study, the a priori probability distribution Py(% = True),

for which the components of « are typically hydrometeor water
contents at different levels in'the atmosphere, is decidedly
non-Gaussian. Hydrometeor water contents usually follow a

- lJog-normal probability distribution (see [35]).

The alternative approach utilized in the present study is to
make an approximate evaluation of the integral form of the
minimum variance solution, (9). Firstly, a sufficiently large
database of atmospheric profiles and associated brightness '
temperatures is generated using output of the GCE model
(Section TI-A) in conjunction with the forward passive mi-
crowave radiometer model (Section II-B). The impact of the
database size and diversity of atmospheric .profiles on the
accuracy of profile retrievals will be examined in the next
section. Using the large atmospheric profile/radiative database,
the integral form of the minimum variance solution, (9) can
be approximated by

E‘(:t) = . -
exp {—0.5[y, —y,(z,)]" (O+8) 'y
Z Zj A :

J

a AC

(12)
where A is the normalization factor
A= exp ({—05[yo—y(z;)]"} (0+85) " [y —u,(z,)]).
J

(13)
The integrals in (9) and (10) are replaced by the summations
in (12) and (13) over all model simulated profiles (z;) in the
atmosphere/radiative model database. Here the main assump-
tion is that profiles in the model database occur with nearly the
same relative frequency as those found in nature, or at least
with the same frequency as those found in the region where
the inversion method is to be applied. Under this assumption
the weighting by FP,s(Z = Zirue) in the integral form (9) is
represented simply by the relative number of occurrences of a
given profile type «; in the summation (12). Since the profiles
are simulated using a model which incorporates most relevant
physical processes of the earth and atmosphere, the relative
abundance of profiles of a certain type should be roughly
the same as those of naturally-occurring profiles if a) the
atmospheric model is used to simulate cloud development over
the range of environments which are observed in the region of
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interest, and b) that each cloud model simulation is sampled
at regular time intervals, such that no particular stage of cloud
or cloud system development is favored over another.

III. RETRIEVAL PERFORMANCE

It is possible to isolate the performance of the retrieval
procedure by using synthetic data. The retrieval currently uses
two distinct simulations to form its database. The first is
the “GATE” simulation which developed in a very unstable
environment and is known to contain large ice water contents
[35]. Profiles are chosen from 5 model times at 126, 138,
174, 210, and 234 minutes into the simulation. The second
model is a “TOGA/COARE” like simulation which contains
much smaller ice water contents than the GATE simulations.
Precipitation cells are tilted with respect to the vertical such
that the heaviest rainfall rates are physically displaced from
the maximum ice-water contents by as much as 20 km.
Profiles from this simulation are chosen at 60, 90, 120,
150, 180, 210, and 240 min into the simulation. In the
performance tests which follow, the TOGA profiles at 210
min into the simulation are used to represent the validation
data. At this time, the system is mature and contains some
of the strongest and most widespread rainfall. Brightness
temperatures corresponding to this model time are treated
as the “observed” brightness temperatures in the following
studies. All simulations assume a “water” background.

Fig. 3(a)-(d) shows the retrieval performance using various
data bases. The results correspond to retrievals at the highest
sampling rate of the SSM/I (12.5 km) using the SSM/I chan-
nels and viewing angle. The particular format for displaying
the retrieval results was chosen because it provides insight
into the performance of the retrieval throughout the dynamic
range of rainfall rates. The dependent database results shown
in Fig. 3(a) use only profiles from the TOGA-210 minute
simulation. The variable o plotted is the width of the Gaussian
distribution used to assign weights to individual profiles. As
can be seen, results are almost perfect if sigma is small, but
deteriorate quickly with increasing o. The interpretation of this
results is straightforward. Since all the “observed” profiles are
contained in this dependent database, a small ¢ guarantees
that only the true profile is selected and that few profiles
with similar Tb but diverse structures are weighted in the
final result. As o gets larger, these more dissimilar profiles
are weighted into the final structure and the results become
less exact. Particularly, the retrieval is seen to overestimate
the small liquid water contents up to ~0.8 kg/m?. This value
corresponds to surface rainfall rates less than 3 mm/h. From
0.8 kg/m? to 3.5 kg/m? (3-15 mm/h), the retrievals for
o = 1.5 and 3.0 can be seen to follow the observations
quite well. At higher liquid water contents, the retrieval is
seen to systematically underestimate the observed values.
Again, these results are not too surprising. At low rainfall
rates, light uniform rain tends to have very similar brightness
temperature signatures as heavier, more variable rain. Since
these signatures are indistinguishable to a microwave sensor,
the weighted average of profiles carried out by the retrieval
tends to overestimate the very light rainfall amounts. At the
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TABLE 1T
AVERAGE NUMBER OF STRUCTURES SELECTED BY RETRIEVAL FROM A SUITABLE
{(TOGA) DATABASE COMPARED TO AN UNSUITABLE (GATE) DATABASE

TOGA GATE
Max. RMS (avg.N) (avg. N)
15 . 246 0.06
3.0 47.75 0.72
6.0 443.02 34.39

high rainfall end, saturation of the brightness temperature
signal is responsible for the underestimation.

Fig. 3(b) shows the same results discussed above, but using
the independent “TOGA” structures to form the database (i.e.,
the “observations” are now excluded from the database of
possible structures). The results can be seen to closely follow
the trends discussed for the dependent database. A notable
exception is the fact that a small value of o no longer
produces the almost perfect results. This is expected since the
“observed” profiles are not available to the retrieval in this
experiment.

Fig. 3(c) shows the retrieval results when only structures
from ‘the “GATE” simulation are made available to the re-
trieval. In this case, the retrievals are seen to perform rather
poorly. This is due primarily to the fact that the database
contains only candidate structures which are systematically
different from the observed ones. This lack of fit leads to two
questions: a) Given that any database will usually contain suit-
able as well as unsuitable profiles, can the retrieval select the
appropriate ones? and b) Is there information in the brightness
temperature differences that indicates poor performance due
to a shortage of suitable structures? The first question can be
answered in a straightforward manner using the “combined”
database which includes all independent “TOGA” structures
as well as the “GATE” structures. Fig. 3(d) reveals that the
retrieval performs almost exactly as if only the independent
“TOGA” structures had been used. The second question is
related to expected errors in the retrieval. The fit of the
database to the observations may be seen by simply counting
the number of structures that are within a specified tolerance
(in T'b) of the observations. If the database properly represents
the observations, then the number of structures within this
tolerance should be high. Conversely, if the database structures
are vastly different from the observations, then the number of
structures with similar brightness temperature vectors should
be small. Table II lists the average number of structures within
the prescribed tolerance for both the “TOGA” as well as the
“GATE” database shown in Fig. 3(b) and (c). The tolerances
are given in term of the rms T'b differences.

Table II shows that for a maximum rms deviations of 1.5 K,
which corresponds roughly to the observational uncertainties,
the “TOGA” database had an average of 2.5 structures that had
a T'b vector similar to any observation. The “GATE” database,
on the other hand, had virtually no structures, implying that
on average, the database appears to fit the observations much
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less well than the “TOGA” simulation. Such information is
valuable wheh assigning confidence levels to individual pixels.

Fig. 4(a) and (b) depict the retrieval results for' surface
rainfall rate and integrated ice respectively. The surface rainfall

rate is defined as the precipitation liquid present in the lowest

0.5 km of the cloud structure. This retrieval is again seen to
follow the pattern of the integrated liquid, except that the total
errors appear somewhat larger. This is due to the fact that the
passive microwave emission signal is better correlated with the
integrated liquid than with the liquid at only the lowest 0.5-km
layer. The integrated ice retrievals are considerably better than
the liquid retrievals. This is due to the fact that the 85 GHz
data which contains the greatest ice scattering signal, have
resolution comparable to the resolution of the retrieval. The
correlation is therefore not impaired by discrepancies between
the true resolution of the sensor (~48 km for the 19 GHz
emission signal) and the resolution of the retrieval.

Fig. 5 shows the same result as Fig. 3(d), except that the
retrievals are performed for 25-km footprints matching the all-
channel sampling resolution .of the SSM/I. Comparing Fig. 5
with Fig. 3(d) shows that the two retrievals are again quite
similar in tendency. The retrieval is better for 25-km footprints .
as should be expected because a much greater fraction of the
energy from the rainfall scene is contained withinh a 25-km
footprint than in a 12.5-km footprint.

Finally, Fig. 6(a) and (b) show results from this technique
applied to the expected TRMM Microwave Imager (TMI)
brightness temperatures. Fig. 6(a) uses only the channels of
the SSM/I but with the improved resolution of the TMI due
to the lower orbit of TRMM (350 km versus 833 for SSM/I).
The results are for 10 km retrievals which correspond roughly
to the all channel sampling rate of TMI. Results are improved
over those shown in Fig. 3(d) (12.5-km resolution of SSM/T)

“and even Fig. 5 corresponding to the 25 km SSM/I retrievals.

7
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TABLE III
SYNTHETIC RETRIEVAL PERFORMANCE SUMMARY. ALL VALUES CORRESPOND TO A WATER BACKGROUND

Fig. Instrum. Resol. dbase  Parameter rms error correlation bias
(% of mean) (% of mean)

32 SSMA 12.5 Depend. Tot. Liq. 68 0.81 0.9
3b SSMA 12.5 Toga Tot. Liq. 74 0.77 -18
3¢  SSM/ 12.5 Gate Tot. Lig. 101 0.60 -213
3d Ssm1 12.5 All Tot. Lig. 75 0.77 -09
4a  SSMAN 125 All Sfc. Rain 91 0.79 0.7
4 SSMAN 12.5 All Tot. Ice 34 0.94 -9.6
5 SSMA1 25.0 All Tot. Lig. 48 0.88 1.0
6a TMI 10.0 All Tot. Liq. 51 0.90 1.8
6b TMI 10.0 All Tot. Liq. 57 0.88 -74

texcluding the 10-GHz channels.

Fig. 6(b) then shows the addition of the 10-GHz channel
to the expected TMI retrievals. At this point, most of the
underestimates at low rain rates as well as the underestimates
at high rain rates have disappeared. This is due to the fact
that the 10-GHz channel is virtually linear in the low rain rate
domain and does not saturate as fast as the 19-GHz channel.
The retrievals shown in Fig. 6(b) show good agreement with
the observations up to ~5 kg/m? which corresponds to a
rainfall rate of ~25 mm/h. At this point even the 10 GHz
is near saturation. A small underestimation tendency can be
seen in the figure.

To provide more quantitative assessments of the previous
discussion, Table III presents summary values of rms errors,
correlation coefficients and biases associated with each of the
retrievals shown in Figs. 3-6. All tabulations are for ¢ = 3.0
K. In general, the values in Table HI closely follow the trends
shown in the figures. The notable exception are the results
found in Fig. 6. Fig. 6(b) shows that adding the 10-GHz
channel to the TMI produces significant improvements, while
Table TII shows that the rms errors and correlations actually
decrease slightly. The explanation for this behavior may be
tracked to the relatively poor spatial resolution of the 10-GHz
channel. While the 10-GHz channel is useful to eliminate any
systematic beam filling errors (thereby increasing the fit in
Fig. 6(b), its signal stems from a footprint many times larger
than the pixel being retrieved. The noise introduced by this
discrepancies in resolution disappears when larger pixel areas
are considered.

IV. AIRCRAFT STUDIES

During September and October 1993, a mini-experiment
was conducted at the NASA Wallops Flight Facility called

the Convection and Atmospheric Moisture Experiment
(CAMEX) [37]. The ER-2 was instrumented with microwave,
visible/infrared radiometers, and the ER-2 Doppler Radar
System (EDOP). The AMPR instrument is a four-channel
passive microwave sensor measuring 10.7, 19.0, 37.0, and
85 GHz. At nadir, the resolution of each channel is 2.8,
2.8, 1.5, and 0.6 km, respectively. Details of the instrument
performance may be found in [38]. The EDOP system [39],
[40] is a new radar system installed in the ER-2 to measure the
vertical reflectivity and hydrometeor motions simultaneously.
EDOP, located in the nose of the ER-2, is an X-band (9.6
GHz) Doppler radar with fixed nadir and forward-looking
beams. The antennas have 3° beam widths which produce a
spot size of about 1.2 km at the surface (assuming a 20-km
aircraft altitude). For CAMEX, the system was configured for
reflectivity measurements with 150 m gate spacing. The overall
accuracy of EDOP during CAMEX was better than about 3 dB
as determined from independent measures such as comparisons
with the Melbourne, FLL WSR-88D radar. On October 5, 1993,
18:33-18:40 UTC, the ER2 overflew a thunderstorm over an
oceanic background. The EDOP measured reflectivities are
shown in Fig. 7(a). The corresponding AMPR brightness
temperatures at nadir are shown in Fig. 7(b).

All GCE model structures were used in the retrieval data-
base for this case study. Due to the high resolution of the
measurements, all profiles were kept at their original reso-
lution (1.5 km for the “GATE” simulations and 1.0 km for
the “TOGA” simulations). The small differences in sensor
resolution for different channels was ignored. Brightness tem-
peratures at the four channels were calculated to correspond
to each cloud model structure. Fig. 7(c) shows the retrieved
profiles generated from the four-channel AMPR data. In order
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Results shown are for 12.5-km retrievals using SSM/I channels.

to allow for direct comparisons with the validation data,
hydrometeor profiles derived from GPROF were converted
to equivalent reflectivities using the drop size distributions
specified by the GCE model. Attenuation is accounted for.
Quantitative comparisons between observed and retrieved ver-
tical structures at 14 levels show that the retrievals have a bias
of 2.97 dB with a mean error of 5.6 dB. Overall, the structures
appear quite similar.

Two parameters are needed in order to ran GPROF retrievals
for which there is no theoretical guidance. The first of these
is the relative weight assigned to each channel in comparing
the GCE temperatures to the observations. In the current high-
resolution implementation of GPROF, weights are assigned
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using: wt = {x%. + x4,}"" , where xobs = 1.5 K and
Xsim 18 2 K for 10 and 19 GHz, 3 K for 37 GHz, and 5
K for the 85-GHz channel. This particular choice of X iS
consistent with the fact that higher frequency channels have
larger noise in the simulations due to the uncertainties in
the ice parameterization. These values produced consistently
low rms errors in the synthetic satellite retrievals. While it
might be possible to optimize the relative weights based upon
validation data, it was felt that this might compromise the
results presented here. The second parameter needed is the
width of the Gaussian function, o, used to assign relative
weights to the individual profiles. The simulations shown in
Section III showed that smaller values of o generally produced
better results. In applications to real data, however, it was
found that setting ¢ too small tended to generate retrievals
with occasional noisy spikes. This is due to the fact that when
no structure is given sufficient weight (caused by small values
of o), then GPROF resorts to choosing the single structure
with the smallest rms error. In order to avoid this undesirable
noise, the value of o was set to the smallest possible value
which showed no visible noisy results. Satellite data led to a
value of approximately 4 K and this value is again used here
in order not to compromise the results with any case specific
adjustments.

On October 5, 1993, 19:00-19:12 UTC, the ER2 overflew
a precipitation event over a land background. The EDOP
equivalent reflectivities and corresponding AMPR brightness
temperatures at nadir are shown in Fig. 8(a) and (b), respec-
tively. For land backgrounds, the high-resolution implemen-
tation of GPROF is applied in exactly the same fashion as
over the oceanic background. Unlike the oceanic situation
where a good radiometric response to hydrometeor content is
seen at all frequencies, land background simulations generally
show a pronounced response only to ice scattering at the
higher frequencies (predominantly 85 GHz). Because of this
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behavior, it is expected that over land, the retrieved profiles
will depend strongly on the observed 85 GHz scattering
signature regardless of the channels used to compare the
observed and simulated radiances. Results from GPROF are
shown in Fig. 8(c). It is immediately evident that most of the
features seen in the radar reflectivity image are not properly
captured by the retrieval. Closer inspection of the AMPR
brightness temperatures reveals the cause for this behavior.
Fig. 8(b) shows that there is virtually no signal, even in the
85-GHz channel for this rain event. The bias in this retrieval
was —0.33 dB and the mean error was 8.1 dB. Overall, the
retrieved structures cannot be said to produce an acceptable
rendering of the observed reflectivity field.

This example over land, although perhaps not typical of
convective storms which show a reasonable correlation be-
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tween rainfall and ice scattering, illustrates the shortcoming of
passive microwave retrievals over land. For global satellite
applications, the database of structures used by GPROF is
therefore limited to the “GATE” simulations. The rational for
restricting the database to these simulations is that the “GATE”
profiles have been used extensively in the Goddard Scattering
Algorithm (GSCAT) (see [3]) and tend to produce global mean
values in fairly good agreement with raingauge observations.
It should be made clear that these agreements are for a large
scale area averages—not for a pixel by pixel agreement.
The frequent lack of a coherent rainfall signal over land, as
demonstrated above, ultimately makes accurate instantaneous
retrievals over land very difficult if not impossible.

V. SATELLITE STUDIES

The general methodology of the retrieval was discussed in
detail in Section II. For global applications, however, certain
additional steps are taken before the retrieval is applied. Over
oceans, these steps consist of eliminating cloud free regions
from consideration. This is done to improve the computational
efficiency of the algorithm. Over land backgrounds, the algo-
rithm not only screens pixels for apparent cloud free conditions
(warm 85 GHz brightness temperatures), but it also screens
pixels which are thought to be contaminated by snow or ice
on the surface. The relative channel weights are also modified
to account for the larger uncertainties due to the background
radiances associated with larger footprints. Over water xsim 1S
set to 4.0 K for 19 GHz, 4.5 K for 22.235 GHz, 5.0 K for 37
GHz, and 6.0 K for 85 GHz. Over land, the uncertainties of the
surface become more pronounced and the channel weights are
used to reflect that. For land retrievals, gy, 18 set to 7.5 K for
19 GHz and 22.235 GHz, 6.0 K for 37 GHz, and 4.0 K for 85
GHz. This weighting reflects the fact that higher frequencies
are less likely to penetrate to the surface and thus less
likely to be contaminated with surface noise. As mentioned
previously, only the “GATE” simulation is used to construct
the database over land because the tilted nature of the “TOGA”
simulations render relationships between ice scattering and
rainfall meaningless. Over coastlines, the retrieval uses the
land database, but only the 85 GHz-H channel is given any
weight. This was done because any advantage in using lower
frequency channels to help quantify large scattering events is
offset by the fact that uncertain fractions of land and water
background in the pixels make quantitative interpretation of
the lower frequency channels virtually impossible.

One additional step was implemented for global retrieval
purposes. This step serves as a quality control flag when
GPROF finds no suitable structures from which to generate a
results. In these situations, GPROF uses the nearest available
structure in an rms sense and notes the deviation between
observed and retrieved brightness temperatures. Before a given
profile is considered final, however, GPROF sets all pixels
with excessive rms errors to no-rain and then applies a median
filter to the data. The median filter operates on the pixel and
the 8 surrounding ones. This procedure will eliminate spurious
rain signals that may be due to such things as small islands
or defects in the data itself. It does not, however, adversely
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TABLE 1V
COoMPARISON OF GPROF GLOBAL RAINFALL ESTIMATES WiTH GSCAT AND GPCP RESULTS. COMPARISONS ARE FOR OCEANS ONLY

A B Res. Nobs <A> <B> Corr. RMS diff.
[mm/mo.] [mm/mo.] {mm/mo.]
GPROF  GSCAT 2.5° 2155 82.0 87.9 0.934 51.7
GPROF  GPCP 2.5° 2155 82.0 119.6 0.924 65.7
GSCAT GPCP 2.5° 2155 87.9 119.6 0.888 74.3
GPROF  GSCAT 5.0° 571 82.0 88.5 0.954 38.7
GPROF  GPCP 5.0° 571 820 117.0 0.945 57.3
GSCAT GPCP 5.0° 571 88.5 1170 0.919 60.2

affect pixels imbedded in areas of precipitation where the cloud
structure database may have been underpopulated. While this
solution may not be ideal, the thrust of GPROF was to develop
a very simple, logically structured profiling algorithm which
could serve as a basis for future enhancements. Work such as
that of [11], or [12], which iteratively modify the profiles to
minimize the T'b differences are undoubtedly worth exploring
in these situations. Until the extent of the improvement can
be demonstrated, however, the main goal of this algorithm is
to preserve the simplicity and transparency that the current
solution offers. Fig. 9 shows a schematic flow diagram of
GPROF as it is currently implemented.

A. Global Applications

Rainfall estimates were made using GPROF in order to
compare it to existing algorithms whose properties have been
documented. These algorithms are GSCAT [3], which is a
scattering algorithm using primarily the 85-GHz horizontal
polarization, and the emission algorithm used for the GPCP
project [2] which uses primarily the 19-GHz emission channel.
The emission algorithm works over water only. Because
GPROF is currently limited to tropical environments. (This
is dictated by the availability of trustworthy cloud dynam-
ical model simulations.) Therefore, only those areas whose
climatological surface temperature is greater than 296 K are
retrieved by GPROF. Results of the three algorithms are shown
in Fig. 10. As can be seen, the algorithm agree quite well
in the broad sense of where the precipitation maxima occur.
Fig. 11 shows the relation among individual grid elements,
at 2.5° resolution, among the three algorithms. Quantitative
comparisons between the three algorithms (where all three
have data) are presented in Table IV.

While comparisons with ground based validation data may
contain significant scatter due to the sampling limitations of
the satellite, the scatter in these diagrams is due entirely to
differences in the physical interpretation of the radiometric
signal. The rms differences between the algorithms is still
~66% of the mean monthly accumulations for 2.5° grid boxes
and ~54% for 5° grid boxes. These differences are substantial.
Thus, while the global rainfall maps seem to be in good
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Fig. 9. Schematic flow diagram of GPROF algorithm.

qualitative agreement, that agreement cannot be translated
into agreements on the physical interpretation of rain signals.
The fact that the correlations between GPROF/GSCAT and
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GPROF/GPCP are higher than GSCAT/GPCP is an indication
that GPROF is making use of both emission as well as
scattering signatures.

B. Darwin Case Study

To test of the algorithm performance, a two month period
covering February and March 1988 over Darwin, Australia,
was selected. Validation data is available from the Darwin

5-cm radar and a network of rain gauges which served to
calibrate the reflectivity—rainfall relationships. These cases
were also compared in a previous profiling algorithm [40]),
henceforth referred to as [40] and thus serve as a reference
to earlier results. Table V presents the summary statistics of
the intercomparison.

While the results from the current algorithm very much
follow the pattern of results shown in [40], the results are not
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Fig. 11. Scatter diagram of monthly rainfall corresponding to 2.5° grid

elements shown in Fig. 10. Top panel: Relationship between “scattering” and
“profiling” algorithms. Center panel: Relationship between “‘emission” and
“profiling” algorithms. Bottom panel: Relationship between “scattering” and
“emission” algorithms.

identical. First of all, the Z-R relationship used to convert
radar reflectivities was modified from Z = 170R'® used
in [40] to Z = 167RY?5. This change was suggested by
[40], who did a careful analysis of the Darwin radar data
for February 1988. In that analysis they found that the Z =
170R1-3, which was originally derived from disdrometer data,
underestimated the rainfall when compared to the raingauge
network. A second difference is that GPROF was not able
to achieve the extremely high correlations achieved by [40]
(0.966) over water. This may be due to the heritage of [40]
in which model structures were in large part developed to
get good correlations with available radar data. Since Darwin
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TABLE V
SUMMARY STATISTICS FOR DARWIN VALIDATION STUDY

Water Coast Land
N. obs 152 148 52
mean rainfall (GPROF) 0.268 0.310 0.319
mean rainfall (radar) 0.279 0.483 0.457
bias -0.09 -0.173 -0.138
TS error 0.517 0.537 0.712
correlation 0.800 0.733 0.882

represents one of only a few sites with reliable ground based
radar data, this undoubtedly had a major impact upon the
structures available to the retrieval and thus on the correlations
achieved at Darwin. GPROF structures are derived solely from
the numerical models and are thus completely independent of
the Darwin data. While the correlations are not as high as
they were for [40], there is good reason to expect these results
to be more globally representative than the [40] results. For
pixels over water, it should also be mentioned that part of the
lower correlation stems from an overestimate of precipitation
during monsoon events that generated large areas of relatively
uniform precipitation. We believe the overestimate (seen also
in the synthetic data) to be the result of poor spatial resolution.
More work is needed to determine the specific effects of
antenna pattern deconvolution schemes and adding spatial
information in the form of horizontal variability to address the
poor horizontal resolution problem. To compare the vertical
structure retrieved by GPROF, we again follow the example
used by [40]. Fig. 12(a) and (b) show the surface rainfall
inferred by GPROF and the Darwin radar, respectively. The
vertical structure along the dashed line [shown in Fig. 12(a)
and (b)] inferred by GPROF is shown in Fig. 12(c) while
the measured vertical cross section is shown in Fig. 12(d).
Aside from the poor spatial resolution inherent in the SSM/I
retrievals, the two vertical cross sections can be seen to show
fairly good agreement.

Over land, the correlations achieved with GPROF are higher
than the [40] results. This appears to be due to the fact that
GPROF has a greater reliance upon the 85-GHz channel over
land than the [40] algorithm. Correlations are thus higher
although the bias and rms errors are similar to previous results.
Over coastlines, the correlations are lower than previously. The
difference is largely due to a procedural change. [40] treated
all coastlines pixels as either water or land background. While
this caused some problems for pixels positioned over the actual
coastline, it allowed for reasonable retrievals of those pixels
which were either over water or land. GPROF uses only the
85-GHz scattering signal over all pixels classified as coastline.
While this procedure appears to degrade the results somewhat,
it is consistent with the philosophy of GPROF that the behavior
of the algorithm be completely predictable.

C. TOGA/COARE

As a final example, we compare the results from GPROF
to the shipborne radar data obtained during TOGA/COARE.
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Fig. 12. Retrieved rainfall compared to ground-based radar for a case study over Darwin, Australia, at 09:35 UTC 27 March 1988. (a) Retrieved surface
rainfall from SSM/L (b) Radar-derived rainfall. (c) Cross section of reflectivities along § = 290° [shown in panels (a) and (b)] as derived from the
retrieval algorithm. (d) Measured radar reflectivities along 6 = 290°.

Comparison of all coincident pairs of satellite and radar pairs, the validation data for Cruises II and III. Because the vast
averaged to 0.5° resolution are presented in Table VI. To first majority of algorithms, both microwave as well as infrared,
order, it can be seen that GPROF significantly overestimates ~overestimated the rainfall over the TOGA/COARE region
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TABLE VI
COMPARISONS BETWEEN SURFACE RADAR OBSERVATIONS
AND GPROF RAINFALL RATES FOR THE 3 CRUISES OF
TOGA/COARE. VALUES IN () CORRESPOND TO [40] RESULTS

Cruise I Cruise IT Cruise I
N pixels (0.5°) 1212 (1222) 1737 (1715) 1637 (1617)
Mean radar [mm/hr}] 0.103 (0.100) 0.197 (0.192) 0.130 (0.136)
Mean satellite {mm/hr] 0.066 (0.098) 0.527 (0.453) 0.238 (0.217)
RMS error [mm/hr] 0.231 (0.461) 1.479 (1.284) 0.753 (0.889)
Correlation Coef. 0.788 (0.683) 0.666 (0.703) 0.707 (0.554)

by margins similar or greater than GPROF (see [42]), the
validation data itself may be questionable. For the 4 months
covered by the shipbome radars, the GOES Precipitation
Index, (GPI), generated a mean rainfall of 322 mm/month
compared to 109 mm/month derived from the radars. While
there is currently no real evidence to identify the source
of the discrepancy, recent attention has been given to the
vertical structure of the precipitation. Initial results from the
wind profiler at Kapingamarangi atoll suggest that the mean
reflectivity of convective precipitation decreases by ~1 dB/km
from the surface. Such a vertical structure could have a
significant impact upon the total rainfall estimated from the
shipborne radars if the climatological decrease of reflectivity
with height were not accounted for. A second source for
significant discrepancies might be the general abundance of
stratiform precipitation, particularly during Cruise II, reported
by the TOGA participants. The emission signatures of large
stratiform regions tend to be greater than the equivalent
emission for highly variable rain fields.

As can be seen from Table VI, the estimates of GPROF
are significantly higher than the shipborne radar estimates for
Cruises II and IIL. This problem, as discussed above, may
be related to the radars. Comparing GPROF to the earlier
estimates of [40], it can be seen that the rms errors and
correlations are better for GPROF during Cruises I and III
while [40] performed slightly better during Cruise II.

VI. CONCLUSION

This paper has focused primarily upon the surface rainfall
generated by the GPROF algorithm because it is the quantity
which is most easily verifiable. Quantitative vertical structure
which is associated with the precipitation was only shown
in two examples using aircraft data and one example using
SSM/T data and the Darwin, Australia radar. Overall, the
results appear very encouraging despite the fact that GPROF
has not undergone any rigorous optimization based upon
surface radar products. The overall performance of GPROF
was found to be similar to a previous algorithm developed
by [39] and [40] that used hypothetical structures rather
than dynamically derived structures from the GCE model.
For the Darwin validation study, the overall biases remained
roughly constant between the two algorithms. Correlations
decreased somewhat over water backgrounds but increased
over land. The decrease over water background could be
explained by the fact [40] that structures had considerable
heritage from the Darwin area while GPROF structures are
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completely independent of the validation data. Over land, the
greater reliance of GPROF upon the scattering channels led
to somewhat better correlations there. The atoll case study,
although not specifically shown in [40], revealed that GPROF
produces generally higher rainfall accumulations than [40] by
approximately 10%. Since both GPROF and [40] underesti-
mate the atoll gauge accumulations (GPROF underestimates
the atoll accumulations for August 1987 by 22.7%) the higher
rainfall accumulations from GPROF probably represent an
improvement. The fact that sampling errors play such an
important role in comparing monthly accumulations from
sparsely sampled satellite data over 2.5° with continuously
sampled point measurements make it necessary to qualify
the last statement. For the TOGA/COARE comparison, the
most important result is the large discrepancy between satellite
and ship-borne radar estimates. The fact that there is general
agreement among the various satellite techniques, however,
casts some doubts as to the overall magnitude of the radar
estimates. From an overall bias point of view, GPROF is
near the median of all submitted algorithms. The correlations
achieved with GPROF versus [40] are mixed. GPROF had
significantly higher correlations for Cruises I and III while the
correlation decreased somewhat for Cruise II. Compared to the
other algorithms submitted to AIP3, GPROF correlations are
better than average for Cruises I and III but below average
for Cruise IL

The ability to properly retrieve the precipitation profiles
using GPROF depends in large part upon the information
content of the brightness temperature signal. Over land, where
the signal is dominated by the 85-GHz scattering signature,
the algorithm in essence always retrieves the mean hydrom-
eteor structure as determined by the cloud models, which
corresponds to the integrated ice content observed by the 85-
GHz channel. Over water where more radiometric signal is
available, the algorithm is able to discern far more structure
information as shown in Fig. 7. Careful inspection of the
SSM/I based over-water retrievals shown in Fig. 12, however,
indicate that much of the fine structure apparent from the
aircraft retrievals is not evident in the satellite retrievals.
This loss of vertical structure information is related to the
relatively large pixels of the SSM/I. The inevitable mixture
of rain systems in various stages of development causes a
decrease in the number of independent channels which in turn
is reflected in the retrieved vertical structure. The improved
spatial resolution of TRMM, will therefore be the key element
for obtaining improved hydrometeor profiles in the future.

GPROF was designed primarily with operational goals of
TRMM in mind. To that end, it was designed to meet two
key requirements. The first requirement is that GPROF be
computationally modest. In its current implementation, one
month of SSM/I data can be processed in ~24 h on a midsize
workstation. This substantial gain over previous profiling
algorithms has been achieved primarily by eliminating ex-
plicit radiative transfer computations from inside the retrieval
scheme. While this procedure may occasionally sacrifice the
algorithm’s ability to obtain an ideal match between observed
and modeled T'b, the algorithm benefits by being able to make
use of the best available radiative transfer schemes without
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concern for time required by these calculations. This allows
GPROF to use the intrinsic variability of the cloud model
fields in the retrieval rather than making a priori adjustments
for the rainfall inhomogeneity. The second requirement is
that GPROF be structured so individual processes within the
retrieval are clearly separated and their effect upon the final
result is both predictable and quantifiable. This design is meant
to facilitate incremental improvements by allowing effects of
specific refinements to be clearly documented.

One shortcoming of GPROF which affects the correlations
particularly during Cruise II, but is also evident at Darwin
and in the synthetic retrievals is the apparent overestimate
of rainfall intensity near the surface when large areas of
either moderate stratiform rain or light stratiform rain with
embedded convection dominate the scene. In these cases,
GPROF produces rainfall values as much as 2-3 times larger
than the surface radars. While these regions may be affected
most strongly by attenuation in surface radars, evidence of
this behavior in the synthetic data suggests that the problem is
related to poor spatial resolution. To that end, continuing re-
search will focus on: a) using antenna deconvolution schemes
to improve the resolution of the low-frequency channels; b)
making use of the horizontal inhomogeneity in the channel
data to help in selecting profiles for the retrieval; and c)
investigating whether channel combinations or differences
(e.g., emission and scattering indices described by [9]) carry
more information pertaining to the nature of the rainfall. The
quantifiable goal of these enhancements is to obtain a better
separation between convective and stratiform rainfall.

One aspect of GPROF mentioned only briefly in this paper
is its ability to incorporate data from passive microwave
sensors such as the TRMM Microwave Imager (TMI) with the
remainder of the TRMM rainfall complement: the Precipitation
Radar (PR) and Visible and Infrared Radiometer (VIRS) and
the Lightning Sensor (LIS). For the PR, radiative transfer
calculations may be performed to predict the cloud model
reflectivities. These predicted values may then be compared at
each range gate to the observed values of reflectivity and a rms
difference can be constructed in the same fashion as described
here. A combined retrieval then consists simply of choosing
the optimal weights with which to combine radiometer and
radar information. Reference [43] has applied this technique to
a combination of airborne radar and radiometer data. The same
procedure can be applied using the VIRS information. The
lightning information is more difficult to use directly because
no explicit information is present in the cloud dynamical model
to indicate which profiles could potentially be associated with
lightning events. If a correlation between individual profiles
and their capacity for producing lightning can be found,
however, then lightning too could be added as a criteria for
weighting structures in the retrieval.

The greatest benefit from a profiling algorithm such as
GPROF will come when latent heating profiles can be supplied
along with the hydrometeor structures. Cloud heating profiles
can be deduced by assigning characteristic profiles to the
convective and stratiform precipitation components and renor-
malizing them by the retrieved surface rainfall rates [44], [46].
The relative portions of convective and stratiform precipitation
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over a given region will be of great interest to climate modelers
due to the differences in the cloud heating/moistening and
radiative effects associated with each type of precipitation
[46], [47]. Heating and moistening profiles (Q1 and Q2) can
also be obtained by associating the GCE model heating and
moistening profiles directly with each hydrometeor column in
the retrieval process. Heating budgets, however, are associated
with not only the hydrometeor structure, but with the dynamics
of the storm evolution as well. More research is therefore
needed to define minimum areas over which such a procedure
is likely to produce acceptable solutions.
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